pH Practice Worksheet

1) What is the pH of a solution that contains 25 grams of hydrochloric acid (HCl) dissolved in 1.5 liters of water?
2) What is the pH of a solution that contains 1.32 grams of nitric acid $\left(\mathrm{HNO}_{3}\right)$ dissolved in 750 mL of water?
3) What is the pH of a solution that contains 1.2 moles of nitric acid $\left(\mathrm{HNO}_{3}\right)$ and 1.7 moles of hydrochloric acid (HCl) dissolved in 1000 liters of water?
4) If a solution has a $\left[\mathrm{H}^{+}\right]$concentration of $4.5 \times 10^{-7} \mathrm{M}$, is this an acidic or basic solution? Explain.
5) An acidic solution has a pH of 4. If I dilute 10 mL of this solution to a final volume of 1000 mL , what is the pH of the resulting solution?

Solutions for the pH practice worksheet:

The important thing to remember for all of these problems is that $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, and that $\left[\mathrm{H}^{+}\right]$is equivalent to the molarity of acid present in a solution. When the pH is less than 7 , the solution is acidic, when the $\mathrm{pH}=7$ it is neutral, and when it is greater than 7 , it is basic.

1) In this problem, there are 0.685 moles of HCl dissolved in $1.5 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$, making a total acid concentration of 0.457 M . To find the answer, take the negative log of this to find that the $\mathrm{pH}=0.34$
2) $\mathrm{pH}=1.55$
3) $\mathrm{pH}=2.53$
4) The pH of this solution is 6.35 , making the solution very slightly acidic.
5) The pH will be 6. This is solved in the same way that dilution problems are solved. If the $\mathrm{pH}=4$, this means that the concentration of $\left[\mathrm{H}^{+}\right]$present is 0.0001 M . When you use the dilution equation, $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$, where V_{2} is 1000 mL , you find that the concentration of acid after dilution is 1.00 x 10^{-6}, which corresponds to a final pH of 6 .
