Review for Final \#2

1) When hydrogen gas reacts with $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}$ is formed. If I perform this reaction with 120 grams of hydrogen gas and 650 grams of $\mathrm{C}_{2} \mathrm{H}_{2}$, how many grams of $\mathrm{C}_{2} \mathrm{H}_{6}$ will be formed?
2) What is the limiting reagent in \#1? How much of the excess reagent will be left over?
3) If I actually succeed in making 450 grams of $\mathrm{C}_{2} \mathrm{H}_{6}$, what is my percent yield? Is this a reasonable answer?
4) $\quad \mathrm{C}_{2} \mathrm{H}_{6}$ is a gas at standard temperature and pressure. What is the volume of the $\mathrm{C}_{2} \mathrm{H}_{6}$ that you formed in problem 1? $\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$.
5) If I increase the temperature of the $\mathrm{C}_{2} \mathrm{H}_{6}$ formed in this reaction to $650^{\circ} \mathrm{C}$, what will the new volume of this gas be?
6) Draw the Lewis structure for $\mathrm{C}_{2} \mathrm{H}_{6}$ and indicate which intermolecular force is most important between its molecules.
